首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2740篇
  免费   224篇
  国内免费   183篇
  2023年   48篇
  2022年   42篇
  2021年   78篇
  2020年   90篇
  2019年   111篇
  2018年   70篇
  2017年   78篇
  2016年   94篇
  2015年   114篇
  2014年   86篇
  2013年   177篇
  2012年   95篇
  2011年   111篇
  2010年   91篇
  2009年   108篇
  2008年   118篇
  2007年   103篇
  2006年   132篇
  2005年   99篇
  2004年   109篇
  2003年   94篇
  2002年   90篇
  2001年   102篇
  2000年   107篇
  1999年   74篇
  1998年   70篇
  1997年   69篇
  1996年   53篇
  1995年   59篇
  1994年   49篇
  1993年   52篇
  1992年   34篇
  1991年   37篇
  1990年   32篇
  1989年   30篇
  1988年   32篇
  1987年   30篇
  1986年   15篇
  1985年   28篇
  1984年   31篇
  1983年   17篇
  1982年   13篇
  1981年   7篇
  1980年   12篇
  1979年   7篇
  1978年   7篇
  1977年   8篇
  1975年   6篇
  1974年   8篇
  1973年   7篇
排序方式: 共有3147条查询结果,搜索用时 16 毫秒
991.
Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics‐based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.  相似文献   
992.
Background and Aims Pepper (Capsicum annuum, Solanaceae) fruits are consumed worldwide and are of great economic importance. In most species ripening is characterized by important visual and metabolic changes, the latter including emission of volatile organic compounds associated with respiration, destruction of chlorophylls, synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyanins), formation of pectins and protein synthesis. The involvement of nitric oxide (NO) in fruit ripening has been established, but more work is needed to detail the metabolic networks involving NO and other reactive nitrogen species (RNS) in the process. It has been reported that RNS can mediate post-translational modifications of proteins, which can modulate physiological processes through mechanisms of cellular signalling. This study therefore examined the potential role of NO in nitration of tyrosine during the ripening of California sweet pepper.Methods The NO content of green and red pepper fruit was determined spectrofluorometrically. Fruits at the breaking point between green and red coloration were incubated in the presence of NO for 1 h and then left to ripen for 3 d. Profiles of nitrated proteins were determined using an antibody against nitro-tyrosine (NO2-Tyr), and profiles of nitrosothiols were determined by confocal laser scanning microscopy. Nitrated proteins were identified by 2-D electrophoresis and MALDI-TOF/TOF analysis.Key Results Treatment with NO delayed the ripening of fruit. An enhancement of nitrosothiols and nitroproteins was observed in fruit during ripening, and this was reversed by the addition of exogenous NO gas. Six nitrated proteins were identified and were characterized as being involved in redox, protein, carbohydrate and oxidative metabolism, and in glutamate biosynthesis. Catalase was the most abundant nitrated protein found in both green and red fruit.Conclusions The RNS profile reported here indicates that ripening of pepper fruit is characterized by an enhancement of S-nitrosothiols and protein tyrosine nitration. The nitrated proteins identified have important functions in photosynthesis, generation of NADPH, proteolysis, amino acid biosynthesis and oxidative metabolism. The decrease of catalase in red fruit implies a lower capacity to scavenge H2O2, which would promote lipid peroxidation, as has already been reported in ripe pepper fruit.  相似文献   
993.
番茄ILs果实性状的主成分分析与聚类分析   总被引:3,自引:0,他引:3  
利用以栽培番茄Lycopersicon esculentum(加工番茄M82)为背景创建的L.pennellii LA716渐渗系群体(ILs,introgression lines),对7个番茄果实主要性状进行了主成分和聚类分析。结果表明,7个果实性状可简化为3个主成分,分别为果实质量因子、果形因子和品质因子,累计贡献率85.435%。利用欧式距离,类平均法可将77份渐渗系分为3大类群,第Ⅰ类群包括70个渐渗系材料,在D=17.53的水平又可将第Ⅰ类群分为2个亚群,果实性状较好的材料主要集中在这个类群中;第Ⅱ类群包括1个材料,说明此材料的独特性;第Ⅲ类群包括6个材料。  相似文献   
994.
The Resplendent Quetzal (Pharomachrus mocinno) is an altitudinal migrant that nests in high elevation cloud forests and migrates toward lower areas during the summer rainy season. It has been suggested that its migratory movements are related to the abundance of ripe Lauraceae fruits. We studied the quetzal diet during two consecutive years, as well as changes in fruit abundance of the plant species on which the bird feeds at El Triunfo Biosphere Reserve, southeastern Mexico. The quetzal was observed feeding on 32 plant species; of these, 24 are new records in its diet. We chose 20 of these 32 species and studied their fruit phenology for two years in order to describe the relationship between fruit and quetzal abundance. Our results showed that quetzal abundance in the breeding area was correlated with the total number of fruiting species, whereas the correlation between quetzal abundance and the number of fruiting Lauraceae species was only marginal. Additionally, a correlation test showed that quetzal abundance was marginally correlated with total fruit availability (total no. of fruits per month); however, the correlation between quetzal abundance and the number of fruits in the Lauraceae was not significant. Our results suggest that the dynamics of food resources may be playing a major role in the quetzal's migratory behavior. Knowing the bird's diet may aid in characterizing the type of habitat adequate for its conservation. Our observations in this respect suggest that conservation efforts to preserve this bird species should concentrate on the protection of its habitat, including both breeding and nonbreeding (migration) locations.  相似文献   
995.
In temperate forested streams, fruit from riparian trees is generally a minor and seasonal component of the allo‐chthonous detritus. In contrast, riparian fruit input to tropical streams is often high and continuous. Detrital fruit is abundant in some forested Hawaiian streams compared to other forms of riparian detritus, and rates of leaf litter processing by macroscopic invertebrates are very low. These observations suggested that fruit is an important food resource for detritivores. A microcosm system was used to measure the rates at which two common detrital fruits, guava and mango, were processed by two common detritivores, the prawn Macrobrachium lar and the gastropod Tarebia granifera. Comparisons of fruit weight loss rates normalized by detritivore weight indicated that M, lar processed guavas at significantly higher rates than T. granifera, differences in rates of mango processing by M. lar and T. granifera were not significant. Microcosms containing both M. lar and T. granifera were used to test for interactions between the invertebrates that affected rates of mango processing. No interspecific interactions were detected. A field study was conducted in Kaiwiki Stream, Island of Hawaii, to determine rates of detrital fruit input and export. Detrital fruit was supplied to the study area year‐round, with peaks corresponding to summer and autumn fruiting seasons. Guavas and mangos accounted for 85 percent of the fruit biomass entering the stream and 92 percent of the fruit exported from the stream. Mean daily export rates of guava were 7 percent of input, and export rates of mango were 5 percent of input. These measurements suggested that most of the fruit entering the stream is retained and comprises a substantial food resource for detritivores. Comparisons of the biomass‐specific rates at which M. lar and T. granifera processed mangos and guavas with the rates at which mangos and guavas entered Kaiwiki Stream suggested that these invertebrates can process most of the detrital fruit in the stream.  相似文献   
996.
The roles of the pyruvate decarboxylation pathway and TCA metabolic cycle in activation of anaerobic metabolism in ripening Hamlin oranges were investigated. Oranges were harvested weekly from October to February during the 1980–81 and 1981–82 growing season. Juice vesicles from each weekly sample were assayed for pyruvate decarboxylase, alcohol dehydrogenase, malic enzyme, phosphoenolpyruvate carboxylase, malate dehydrogenase, citrate synthase, isocitrate dehydrogenase and cytochrome oxidase. Also, juice was assayed for ethanol, acetaldehyde, pyruvate, oxalacetate, malate and citrate. In December when ethanol accumulated rapidly in the fruit, pyruvate decarboxylase and alcohol dehydrogenase increased markedly. During the same month, the pyruvate level declined, suggesting that the increases in enzyme levels activated the conversion of pyruvate to ethanol.  相似文献   
997.
The changes of the carotenoid pigments in the peel of ripening persimmon (Diospyros kaki) cv Triumph were followed for an entire season. During ripening, the total carotenoid decreased until colour break, then increased gradually and drastically at the last ripening stages. The chloroplast carotenoid pattern of the unripe fruit changed into a chromoplast pattern in which cryptoxanthin was the predominant pigment, reaching a level between 40 and 50% of the total carotenoids. It accumulated continuously at a rate of approximately 10% at each 2 week interval, its percentage being characteristic for each ripening stage. Other major pigments at levels of approximately 10% of the total carotenoids were zeaxanthin, antheraxanthin and violaxanthin. In the fully ripe fruit, ripened both on and off the tree, lycopene which was not present before was found as the second major pigment. This unusual pattern change is discussed.  相似文献   
998.
Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. Based on previously reported in vitro assays, β-amylase is considered one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was shown often extrachloroplastic in living cells. The present experiment showed that β-amylase activity was progressively increasing concomitantly with decreasing starch concentrations during apple (Malus domestica Borkh cv. Starkrimson) fruit development. The apparent amount of β-amylase assessed by Western blotting also increased during the fruit development, which is consistent with the seasonal changes in the enzyme activity. The subcellular-localization studies via immunogold electron-microscopy technique showed that β-amylase visualized by gold particles was predominantly located in plastids especially at periphery of starch granules, but the gold particles were scarcely found in other subcellular compartments. These data proved for the first time that the enzyme is compartmented in its functional sites in plant living cells. The predominantly plastid-distributed pattern of β-amylase in cells was shown unchanged throughout the fruit development. The density of gold particles (β-amylase) in plastids was increasing during the fruit development, which is consistent with the results of Western blotting. So it is considered that β-amylase is involved in starch hydrolysis in plastids of the fruit cells.  相似文献   
999.
Appropriate knowledge of the parental cultivars is a pre-requisite for a successful breeding program. This study characterized fruit yield, quality attributes, and molecular variations of ten tomato cultivars during three consecutive generations under greenhouse conditions. Peto 86, Castle Rock, and Red Star cultivars showed the highest fruit yield (kg/plant), total phenolic compounds (TPC), and sap acidity. Principal component analysis categorized the evaluated fruit yield into three groups based on their quality attributes. A robust positive correlation appeared among traits inside each group. A positive correlation was likewise noticed between the first and the second groups. However, a negative correlation was detected between the first, the second and the third group. Molecular profiling, using seven inter-simple sequence repeat (ISSR) primers, produced 60 loci, including 49 polymorphic loci. The molecular analysis also pinpointed the highest genetic similarity (0.92) between P73 and Moneymaker, while the lowest genetic similarity (0.46) was observed between Castle Rock and Moneymaker. The cultivars P73 and Moneymaker showed the lowest genetic distance (2.24), while the highest genetic distance (5.92) was observed between Super Marmand and Peto86, on the one hand, and between Castle Rock and Moneymaker, on the other hand. The chemical analysis of fruit sap indicated the highest levels of TPC, total flavonoids, anthocyanin, ascorbic acid and total soluble solids in Peto 86 and Castle Rock cultivars. Phylogeny analysis of tomato cultivars based on morphological and molecular attributes indicated four distinct clades. Peto 86, Castle Rock, and Red star cultivars can be recommended for the tomato hybridization breeding programs in the future, with other tomato cultivars as potentially high-yielding parents.  相似文献   
1000.
Decades of research have established that the Earth’s magnetic field (geomagnetic field, GMF) is broadly used as a sensory cue for magnetic orientation in various animal taxa, including insects. In contrast to the investigation of the total intensity or inclination of the GMF, the effect of declination on horizontal magnetic movement has been explored in a few species, including flies, cockroaches, and dogs. However, the potential role of declination in the vertical movement in magnetosensitive organisms is yet to be reported. In this study, we provide the first evidence that declination within a natural range of change can affect static geotaxis in fruit flies, as assessed using the tube-positioning assay. In open-field measurements conducted at 22 domestic and foreign locations, the variation in declination was notably dependent upon the specific location, regardless of altitude, with similar variation in total intensity. Flies subjected to a geographic range of declination under the same total intensity and inclination exhibited remarkably different geotactic positioning scores, irrespective of GMF polarity. Notably, we observed a significant negative correlation between the geotactic score and the absolute value of declination, indicating that declination can induce negative geotaxis effects in flies. These results reveal that flies have evolved to incorporate a declination compass into their multimodal sensorimotor system and suggest that declination may be complementary to gravity in terms of environmental factor-driven negative geotaxis in flies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号